represent a genuine effect. As such, we recommend further investigation and a reopening of the discussion around early gluten intake and prevention of CD and hypothesize that high-dose gluten introduction could be the missing link not previously investigated by other prevention randomized clinical trials.

Gideon Lack, MB, BCh
Kirsty Logan, PhD

Author Affiliations: Paediatric Allergy Research Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom.

Corresponding Author: Gideon Lack, MB, BCh, Paediatric Allergy Research Group, Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, Westminster Bridge Road, London SE1 7EH, United Kingdom (gideon.lack@kcl.ac.uk).

Published Online: February 8, 2021. doi:10.1001/jamapediatrics.2020.6519

Conflict of Interest Disclosures: Dr Lack reports grants from Food Standards Agency, Medical Research Council, National Institute for Health Research, National Peanut Board, and Davis Foundation during the conduct of the study; personal fees from DBV Technologies and MightyMissionMe outside the submitted work; and other support for consulting for Novartis, Sanofi Genzyme, Regeneron Pharmaceuticals, and ALK-Abello outside the submitted work. No other disclosures were reported.


Methodologic Concerns With Concluding a Link Between Epidural and Autism Spectrum Disorder

To the Editor We have strenuous concerns about the conclusions of Qiu et al,1 implying a causal link between maternal labor epidural analgesia (LEA) and an increased risk of autism spectrum disorder (ASD) in children, based on their analysis of a retrospective cohort of women who underwent vaginal delivery between 2008 and 2015 in Kaiser Permanente Southern California hospitals. Autism spectrum disorder is a major public health concern attributed primarily to genetic and environmental risk factors2 but, as the authors mention, has a purported association with general anesthesia for cesarean delivery (CD) and CD itself.3 The ASD incidence was lower than prior reports, possibly suggesting missing cases based on very early screening and loss to follow-up. Information regarding LEA management was omitted; however, the authors speculated that transplacental transfer of epidurally administered local anesthetics may be causal factors. Contemporary practice consists of minimal local anesthetics doses at levels insufficient to cause fetal neurotoxicity.4 Longer labors may reflect inherently more complicated pregnancies, and the incidence of ASD according to duration of labor among the no-LEA group is glaringly absent.

Despite the proposed association between epidural analgesia and maternal fever,5 and of fever with adverse neonatal outcomes, fever is dismissed as a mediator based on an adjusted model which ignored preexisting fever and numerous possible confounders, including Apgar scores and neonatal resuscitation.

Numerous statistically significant findings may be attributable to the large data set and the difference in ASD incidence between the exposed and unexposed cohorts (0.6%) is likely not clinically meaningful. Furthermore, the findings from a single hospital system localized to 1 region may not be generalizable, given the strong contribution of genetic and environmental factors to ASD.

Our serious contention with this study is the danger of misinterpretation by women making decisions about their choices for labor pain relief. Millions of women around the world benefit from LEA every year and give birth without any complications to mother or infants. Similar to persistent skepticism related to the safety of vaccines, we are concerned that it may be difficult to reverse false notions, even with contradictory scientific evidence. It is critical to reassure lay persons that no evidence was found that LEA causes ASD: the study’s findings were that the risk of ASD per 1000 deliveries is 13 among women who do not receive LEA vs 19 among those who do receive LEA, and pregnant women should feel safe receiving the most effective labor analgesic technique available.

Allison Lee, MD, MS
Jean Guglielminotti, MD, PhD
Ruth Landau, MD

Author Affiliations: Columbia University, New York, New York (Lee, Guglielminotti, Landau); Society for Obstetric Anesthesia and Perinatology, Lexington, Kentucky (Landau).

Corresponding Author: Allison Lee, MD, MS, Columbia University, 622 W 168th St, PH 5, New York, NY 10032 (a3196@cumc.columbia.edu).


Conflict of Interest Disclosures: Dr Landau is president of the Society for Obstetric Anesthesia and Perinatology.


To the Editor We read with interest the work by Qiu et al investigating a potential association between intrapartum epidural analgesia and autism spectrum disorder (ASD) in offspring. We understand the urgency of uncovering the etiology of ASD given the rising rates in recent years, and we acknowledge the challenges of conducting clinical trials in this field. However, methodologic concerns and lack of biologic plausibility preclude conclusions of a causal relationship between epidural anesthesia and ASD.

The first concern is residual confounding. The investigators used inverse probability of treatment weighting to balance potential confounders, but this does not address the many
unmeasured confounders that remain. They used an E-value to demonstrate that only unmeasured variables strongly associated with both epidural and ASD would nullify the study’s findings. However, numerous unmeasured covariates could achieve this and substantially alter the results. Examples include antepartum and intrapartum characteristics, such as medical comorbidities, length of labor, and labor complications, which have all been associated with epidural use. Additionally, maternal and paternal history of psychiatric disorders, including anxiety and depression, were not included but have been linked to both epidurals as well as ASD.3,5 Furthermore, there are social and cultural differences between women who do and do not receive an epidural.9 Many of these differences also result in disparities with respect to timely evaluation and diagnosis of ASD, leading to ascertainment bias in the ASD outcome.

Furthermore, the biologic plausibility for a mechanistic link between epidural and ASD is weak. The cited animal trial included only 19 monkeys with the findings at high risk for type I error given the numerous tests and multiple comparisons. Additionally, the doses of local anesthetics in labor epidurals have minimal systemic absorption and low levels in the neonatal bloodstream.5 The authors posit immune dysregulation and cytokines as a potential mechanism, but the lack of an association between epidural-related fever and ASD in this large cohort suggests that this is not the biologic link.

In summary, residual confounding, ascertainment bias, and lack of a clear biologic mechanism prohibit concluding a causal link between epidurals and ASD. The implications of this report are profound and will lead to unnecessary angst among pregnant patients, increased intrapartum pain, and potential use of alternative pain management strategies that may be less safe. The study may also precipitate unwar-
Letters

Chunyuan Qiu, MD, MS
Vimal Desai, MD
Anny H. Xiang, PhD

Author Affiliations: Department of Anesthesiology, Kaiser Permanente Baldwin Park Medical Center, Baldwin Park, California (Qiu, Desai); Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena (Xiang).

Corresponding Authors: Chunyuan Qiu, MD, MS, Department of Anesthesiology, Kaiser Permanente Baldwin Park Medical Center, 1011 Baldwin Park Blvd, Baldwin Park, CA 91706 (chunyuan.x.qiu@kp.org); Anny H. Xiang, PhD, Department of Research & Evaluation, Kaiser Permanente Southern California, 100 S Los Robles, Pasadena, CA 91101 (anny.h.xiang@kp.org).


Conflict of Interest Disclosures: None reported.


CORRECTION

Errors in Byline and Author Contributions: In the Original Investigation titled “Assessment of Exposure to High-Performing Schools and Risk of Adolescent Substance Use: A Natural Experiment,” there were errors in the Methods section and Figure 1. In the Methods section, the number of potential participants identified should be 1995 instead of 1996, and the number of ineligible participants should be 487 instead of 486. Likewise, in Figure 1, the total number of potential participants should be 1995, and the number of ineligible patients should be 486. In addition, the number of individuals unable to be contacted or had moved should be 319 rather than 320. Under intervention baseline, the number of individuals who were unable to be reached and individuals who refused were switched. This article was corrected online.


Clarifications of Terms and for Interpreting Incidence Rate Ratios: In the Original Investigation, “Association of the Timing of School Closings and Behavioral Changes With the Evolution of the Coronavirus Disease 2019 Pandemic in the US,” published online first on February 22, 2021, in JAMA Pediatrics, there were errors in the text for description of the incidence rate ratios (IRRs). In the Abstract and main text, “delay of 1 day” and “day of delay” have been corrected to “advance of 1 day” and “day earlier.” The term “days since” has been corrected to “each day earlier” in the text and defined in the legend of the Table as “how much earlier in the pandemic either school closures, gathering bans, or work reductions happened. Each 1-unit increase in a ‘days since’ variable represents 1 day earlier that the change happened.” These corrections do not affect any of the IRRs or other data. The article has been corrected online.


© 2021 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ Columbia University Libraries by Ruth Landau on 06/09/2021